Nacos源码—9.Nacos升级gRPC分析四

大纲

10.gRPC客户端初始化分析

11.gRPC客户端的心跳机制(健康检查)

12.gRPC服务端如何处理客户端的建立连接请求

13.gRPC服务端如何映射各种请求与对应的Handler处理类

14.gRPC简单介绍

 

10.gRPC客户端初始化分析

(1)gRPC客户端代理初始化的源码

(2)gRPC客户端启动的源码

(3)gRPC客户端发起与服务端建立连接请求的源码

 

(1)gRPC客户端代理初始化的源码

Nacos客户端注册服务实例时会调用NacosNamingService的registerInstance()方法,接着会调用NamingClientProxyDelegate的registerService()方法,然后判断注册的服务实例是不是临时的。如果注册的服务实例是临时的,那么就使用gRPC客户端代理去进行注册。如果注册的服务实例不是临时的,那么就使用HTTP客户端代理去进行注册。

 

NacosNamingService的init()方法在创建客户端代理,也就是执行NamingClientProxyDelegate的构造方法时,便会创建和初始化gRPC客户端代理NamingGrpcClientProxy。

 

创建和初始化gRPC客户端代理NamingGrpcClientProxy时,首先会由RpcClientFactory的createClient()方法创建一个RpcClient对象,并将GrpcClient对象赋值给NamingGrpcClientProxy的rpcClient属性,然后调用NamingGrpcClientProxy的start()方法启动RPC客户端连接。

 

在NamingGrpcClientProxy的start()方法中,会先注册一个用于处理服务端推送请求的NamingPushRequestHandler,然后调用RpcClient的start()方法启动RPC客户端即RpcClient对象,最后将NamingGrpcClientProxy自己作为订阅者向通知中心进行注册。

public class NacosNamingService implements NamingService {
    ...
    private NamingClientProxy clientProxy;
    
    private void init(Properties properties) throws NacosException {
        ...
        this.clientProxy = new NamingClientProxyDelegate(this.namespace, serviceInfoHolder, properties, changeNotifier);
    }
    ...
    @Override
    public void registerInstance(String serviceName, Instance instance) throws NacosException {
        registerInstance(serviceName, Constants.DEFAULT_GROUP, instance);
    }
    
    @Override
    public void registerInstance(String serviceName, String groupName, Instance instance) throws NacosException {
        NamingUtils.checkInstanceIsLegal(instance);
        //调用NamingClientProxy的注册方法registerService(),其实就是NamingClientProxyDelegate.registerService()方法
        clientProxy.registerService(serviceName, groupName, instance);
    }
    ...
}

//客户端代理
public class NamingClientProxyDelegate implements NamingClientProxy {
    private final NamingHttpClientProxy httpClientProxy;
    private final NamingGrpcClientProxy grpcClientProxy;
    
    public NamingClientProxyDelegate(String namespace, ServiceInfoHolder serviceInfoHolder, Properties properties, InstancesChangeNotifier changeNotifier) throws NacosException {
        ...
        //初始化HTTP客户端代理
        this.httpClientProxy = new NamingHttpClientProxy(namespace, securityProxy, serverListManager, properties, serviceInfoHolder);
        //初始化gRPC客户端代理
        this.grpcClientProxy = new NamingGrpcClientProxy(namespace, securityProxy, serverListManager, properties, serviceInfoHolder);
    }
    ...
    
    @Override
    public void registerService(String serviceName, String groupName, Instance instance) throws NacosException {
        getExecuteClientProxy(instance).registerService(serviceName, groupName, instance);
    }
    
    private NamingClientProxy getExecuteClientProxy(Instance instance) {
        return instance.isEphemeral() ? grpcClientProxy : httpClientProxy;
    }
    ...
}

//gRPC客户端代理
public class NamingGrpcClientProxy extends AbstractNamingClientProxy {
    private final String namespaceId;
    private final String uuid;    
    private final Long requestTimeout;    
    private final RpcClient rpcClient;
    private final NamingGrpcRedoService redoService;
    
    //初始化gRPC客户端代理
    public NamingGrpcClientProxy(String namespaceId, SecurityProxy securityProxy, ServerListFactory serverListFactory, Properties properties, ServiceInfoHolder serviceInfoHolder) throws NacosException {
        super(securityProxy);
        this.namespaceId = namespaceId;
        this.uuid = UUID.randomUUID().toString();
        this.requestTimeout = Long.parseLong(properties.getProperty(CommonParams.NAMING_REQUEST_TIMEOUT, "-1"));
        Map<String, String> labels = new HashMap<String, String>();
        labels.put(RemoteConstants.LABEL_SOURCE, RemoteConstants.LABEL_SOURCE_SDK);
        labels.put(RemoteConstants.LABEL_MODULE, RemoteConstants.LABEL_MODULE_NAMING);
        //1.通过RpcClientFactory.createClient()方法创建一个GrpcSdkClient对象实例,然后赋值给rpcClient属性
        this.rpcClient = RpcClientFactory.createClient(uuid, ConnectionType.GRPC, labels);
        this.redoService = new NamingGrpcRedoService(this);
        //2.启动gRPC客户端代理NamingGrpcClientProxy
        start(serverListFactory, serviceInfoHolder);
    }
    
    private void start(ServerListFactory serverListFactory, ServiceInfoHolder serviceInfoHolder) throws NacosException {
        rpcClient.serverListFactory(serverListFactory);
        //注册连接监听器
        rpcClient.registerConnectionListener(redoService);
        //1.注册一个用于处理服务端推送请求的NamingPushRequestHandler
        rpcClient.registerServerRequestHandler(new NamingPushRequestHandler(serviceInfoHolder));
        //2.启动RPC客户端RpcClient
        rpcClient.start();
        //3.将NamingGrpcClientProxy自己作为订阅者向通知中心进行注册
        NotifyCenter.registerSubscriber(this);
    }
    ...
    
    @Override
    public void registerService(String serviceName, String groupName, Instance instance) throws NacosException {
        NAMING_LOGGER.info("[REGISTER-SERVICE] {} registering service {} with instance {}", namespaceId, serviceName, instance);
        redoService.cacheInstanceForRedo(serviceName, groupName, instance);
        //执行服务实例的注册
        doRegisterService(serviceName, groupName, instance);
    }
    
    //Execute register operation.
    public void doRegisterService(String serviceName, String groupName, Instance instance) throws NacosException {
        //创建请求参数对象
        InstanceRequest request = new InstanceRequest(namespaceId, serviceName, groupName, NamingRemoteConstants.REGISTER_INSTANCE, instance);
        //向服务端发起请求
        requestToServer(request, Response.class);
        redoService.instanceRegistered(serviceName, groupName);
    }
    
    private <T extends Response> T requestToServer(AbstractNamingRequest request, Class<T> responseClass) throws NacosException {
        try {
            request.putAllHeader(getSecurityHeaders(request.getNamespace(), request.getGroupName(), request.getServiceName()));
            //实际会调用RpcClient.request()方法发起gRPC请求
            Response response = requestTimeout < 0 ? rpcClient.request(request) : rpcClient.request(request, requestTimeout);
            if (ResponseCode.SUCCESS.getCode() != response.getResultCode()) {
                throw new NacosException(response.getErrorCode(), response.getMessage());
            }
            if (responseClass.isAssignableFrom(response.getClass())) {
                return (T) response;
            }
            NAMING_LOGGER.error("Server return unexpected response '{}', expected response should be '{}'", response.getClass().getName(), responseClass.getName());
        } catch (Exception e) {
            throw new NacosException(NacosException.SERVER_ERROR, "Request nacos server failed: ", e);
        }
        throw new NacosException(NacosException.SERVER_ERROR, "Server return invalid response");
    }
    ...
}

public class RpcClientFactory {
    private static final Map<String, RpcClient> CLIENT_MAP = new ConcurrentHashMap<>();
    ...
    
    //create a rpc client.
    public static RpcClient createClient(String clientName, ConnectionType connectionType, Integer threadPoolCoreSize, Integer threadPoolMaxSize, Map<String, String> labels) {
        if (!ConnectionType.GRPC.equals(connectionType)) {
            throw new UnsupportedOperationException("unsupported connection type :" + connectionType.getType());
        }
        return CLIENT_MAP.computeIfAbsent(clientName, clientNameInner -> {
            LOGGER.info("[RpcClientFactory] create a new rpc client of " + clientName);
            try {
                //创建GrpcClient对象
                GrpcClient client = new GrpcSdkClient(clientNameInner);
                //设置线程核心数和最大数
                client.setThreadPoolCoreSize(threadPoolCoreSize);
                client.setThreadPoolMaxSize(threadPoolMaxSize);
                client.labels(labels);
                return client;
            } catch (Throwable throwable) {
                LOGGER.error("Error to init GrpcSdkClient for client name :" + clientName, throwable);
                throw throwable;
            }
        });
    }
    ...
}

(2)gRPC客户端启动的源码

NamingGrpcClientProxy的start()方法会通过调用RpcClient的start()方法,来启动RPC客户端即RpcClient对象。

 

在RpcClient的start()方法中,首先会利用CAS来修改RPC客户端(RpcClient)的状态,也就是将RpcClient.rpcClientStatus属性从INITIALIZED更新为STARTING。

 

然后会创建一个核心线程数为2的线程池,并提交两个任务。任务一是处理连接成功或连接断开时的线程,任务二是处理重连或健康检查的线程。

 

接着会创建Connection连接对象,也就是在while循环中调用GrpcClient的connectToServer()方法,尝试与服务端建立连接。如果连接失败,则会抛出异常并且进行重试,由于是同步连接,所以最大重试次数是3。

 

最后当客户端与服务端成功建立连接后,会把对应的Connection连接对象赋值给RpcClient.currentConnection属性,并且修改RpcClient.rpcClientStatus属性即RPC客户端状态为RUNNING。

 

如果客户端与服务端连接失败,则会通过异步尝试进行连接,也就是调用RpcClient的switchServerAsync()方法,往RpcClient的reconnectionSignal队列中放入一个ReconnectContext对象,reconnectionSignal队列中的元素会交给任务2来处理。

public abstract class RpcClient implements Closeable {
    protected volatile AtomicReference<RpcClientStatus> rpcClientStatus = new AtomicReference<>(RpcClientStatus.WAIT_INIT);
    protected ScheduledExecutorService clientEventExecutor;
    protected BlockingQueue<ConnectionEvent> eventLinkedBlockingQueue = new LinkedBlockingQueue<>();
    //在NamingGrpcClientProxy初始化 -> 调用RpcClient.start()方法时,会将GrpcClient.connectToServer()方法的返回值赋值给currentConnection属性
    protected volatile Connection currentConnection;
    private final BlockingQueue<ReconnectContext> reconnectionSignal = new ArrayBlockingQueue<>(1);
    ...
    
    public final void start() throws NacosException {
        //利用CAS来修改RPC客户端(RpcClient)的状态,从INITIALIZED更新为STARTING
        boolean success = rpcClientStatus.compareAndSet(RpcClientStatus.INITIALIZED, RpcClientStatus.STARTING);
        if (!success) {
            return;
        }

        //接下来创建调度线程池执行器,并提交两个任务
        clientEventExecutor = new ScheduledThreadPoolExecutor(2, r -> {
            Thread t = new Thread(r);
            t.setName("com.alibaba.nacos.client.remote.worker");
            t.setDaemon(true);
            return t;
        });
    
        //任务1:处理连接成功或连接断开时的线程
        clientEventExecutor.submit(() -> {
            ...     
        });

        //任务2:处理重连或健康检查的线程
        clientEventExecutor.submit(() -> {
            ...
        });

        //创建连接对象
        Connection connectToServer = null;
        rpcClientStatus.set(RpcClientStatus.STARTING);

        //重试次数为3次
        int startUpRetryTimes = RETRY_TIMES;
        //在while循环中尝试与服务端建立连接,最多循环3次
        while (startUpRetryTimes > 0 && connectToServer == null) {
            try {
                startUpRetryTimes--;
                //获取服务端信息
                ServerInfo serverInfo = nextRpcServer();
                LoggerUtils.printIfInfoEnabled(LOGGER, "[{}] Try to connect to server on start up, server: {}", name, serverInfo);
                //调用GrpcClient.connectToServer()方法建立和服务端的长连接
                connectToServer = connectToServer(serverInfo);
            } catch (Throwable e) {
                LoggerUtils.printIfWarnEnabled(LOGGER, "[{}] Fail to connect to server on start up, error message = {}, start up retry times left: {}", name, e.getMessage(), startUpRetryTimes);
            }
        }

        //如果连接成功,connectToServer对象就不为空
        if (connectToServer != null) {
            LoggerUtils.printIfInfoEnabled(LOGGER, "[{}] Success to connect to server [{}] on start up, connectionId = {}", name, connectToServer.serverInfo.getAddress(), connectToServer.getConnectionId());
            //连接对象赋值,currentConnection其实就是一个在客户端使用的GrpcConnection对象实例
            this.currentConnection = connectToServer;
            //更改RPC客户端RpcClient的状态
            rpcClientStatus.set(RpcClientStatus.RUNNING);
            //往eventLinkedBlockingQueue队列放入ConnectionEvent事件
            eventLinkedBlockingQueue.offer(new ConnectionEvent(ConnectionEvent.CONNECTED));
        } else {
            //尝试进行异步连接
            switchServerAsync();
        }

        registerServerRequestHandler(new ConnectResetRequestHandler());    
        //register client detection request.
        registerServerRequestHandler(request -> {
            if (request instanceof ClientDetectionRequest) {
                return new ClientDetectionResponse();
            }
            return null;
        });
    }
    
    protected ServerInfo nextRpcServer() {
        String serverAddress = getServerListFactory().genNextServer();
        //获取服务端信息
        return resolveServerInfo(serverAddress);
    }
    
    private ServerInfo resolveServerInfo(String serverAddress) {
        Matcher matcher = EXCLUDE_PROTOCOL_PATTERN.matcher(serverAddress);
        if (matcher.find()) {
            serverAddress = matcher.group(1);
        }
        String[] ipPortTuple = serverAddress.split(Constants.COLON, 2);
        int defaultPort = Integer.parseInt(System.getProperty("nacos.server.port", "8848"));
        String serverPort = CollectionUtils.getOrDefault(ipPortTuple, 1, Integer.toString(defaultPort));
        return new ServerInfo(ipPortTuple[0], NumberUtils.toInt(serverPort, defaultPort));
    }
    
    public void switchServerAsync() {
        //异步注册逻辑
        switchServerAsync(null, false);
    }
    
    protected void switchServerAsync(final ServerInfo recommendServerInfo, boolean onRequestFail) {
        //往reconnectionSignal队列里放入一个对象
        reconnectionSignal.offer(new ReconnectContext(recommendServerInfo, onRequestFail));
    }
    ...
}

(3)gRPC客户端发起与服务端建立连接请求的源码

gRPC客户端与服务端建立连接的方法是GrpcClient的connectToServer()方法。该方法首先会获取进行网络通信的端口号,因为gRPC服务需要额外占用一个端口的,所以这个端口号是在Nacos的8848基础上 + 偏移量1000,变成9848。

 

在建立连接之前,会先检查一下服务端,如果没问题才发起连接请求,接着就会调用GrpcConnection的sendRequest()方法发起连接请求,最后返回GrpcConnection连接对象。

public abstract class GrpcClient extends RpcClient {
    ...
    @Override
    public Connection connectToServer(ServerInfo serverInfo) {
        try {
            if (grpcExecutor == null) {
                this.grpcExecutor = createGrpcExecutor(serverInfo.getServerIp());
            }
            //获取端口号:gRPC服务需要额外占用一个端口的,这个端口是在Nacos 8848的基础上,+ 偏移量1000,所以是9848
            int port = serverInfo.getServerPort() + rpcPortOffset();
            RequestGrpc.RequestFutureStub newChannelStubTemp = createNewChannelStub(serverInfo.getServerIp(), port);
            if (newChannelStubTemp != null) {
                //检查一下服务端,没问题才会发起RPC连接请求
                Response response = serverCheck(serverInfo.getServerIp(), port, newChannelStubTemp);
                if (response == null || !(response instanceof ServerCheckResponse)) {
                    shuntDownChannel((ManagedChannel) newChannelStubTemp.getChannel());
                    return null;
                }
            
                BiRequestStreamGrpc.BiRequestStreamStub biRequestStreamStub = BiRequestStreamGrpc.newStub(newChannelStubTemp.getChannel());
                //创建连接对象
                GrpcConnection grpcConn = new GrpcConnection(serverInfo, grpcExecutor);
                grpcConn.setConnectionId(((ServerCheckResponse) response).getConnectionId());
            
                //create stream request and bind connection event to this connection.
                //创建流请求并将连接事件绑定到此连接
                StreamObserver<Payload> payloadStreamObserver = bindRequestStream(biRequestStreamStub, grpcConn);
            
                //stream observer to send response to server
                grpcConn.setPayloadStreamObserver(payloadStreamObserver);
                grpcConn.setGrpcFutureServiceStub(newChannelStubTemp);
                grpcConn.setChannel((ManagedChannel) newChannelStubTemp.getChannel());
                //send a  setup request.
                ConnectionSetupRequest conSetupRequest = new ConnectionSetupRequest();
                conSetupRequest.setClientVersion(VersionUtils.getFullClientVersion());
                conSetupRequest.setLabels(super.getLabels());
                conSetupRequest.setAbilities(super.clientAbilities);
                conSetupRequest.setTenant(super.getTenant());
                //发起连接请求
                grpcConn.sendRequest(conSetupRequest);
                //wait to register connection setup
                Thread.sleep(100L);
                return grpcConn;
            }
            return null;
        } catch (Exception e) {
            LOGGER.error("[{}]Fail to connect to server!,error={}", GrpcClient.this.getName(), e);
        }
        return null;
    }
    
    private Response serverCheck(String ip, int port, RequestGrpc.RequestFutureStub requestBlockingStub) {
        try {
            if (requestBlockingStub == null) {
                return null;
            }
            ServerCheckRequest serverCheckRequest = new ServerCheckRequest();
            Payload grpcRequest = GrpcUtils.convert(serverCheckRequest);
            //向服务端发送一个检查请求
            ListenableFuture<Payload> responseFuture = requestBlockingStub.request(grpcRequest);
            Payload response = responseFuture.get(3000L, TimeUnit.MILLISECONDS);
            //receive connection unregister response here,not check response is success.
            return (Response) GrpcUtils.parse(response);
        } catch (Exception e) {
            LoggerUtils.printIfErrorEnabled(LOGGER, "Server check fail, please check server {} ,port {} is available , error ={}", ip, port, e);
            return null;
        }
    }
    
    private StreamObserver<Payload> bindRequestStream(final BiRequestStreamGrpc.BiRequestStreamStub streamStub, final GrpcConnection grpcConn) {
        //调用BiRequestStreamStub.requestBiStream()方法连接服务端
        return streamStub.requestBiStream(new StreamObserver<Payload>() {
            @Override
            public void onNext(Payload payload) {
                LoggerUtils.printIfDebugEnabled(LOGGER, "[{}]Stream server request receive, original info: {}", grpcConn.getConnectionId(), payload.toString());
                try {
                    Object parseBody = GrpcUtils.parse(payload);
                    final Request request = (Request) parseBody;
                    if (request != null) {
                        try {
                            Response response = handleServerRequest(request);
                            if (response != null) {
                                response.setRequestId(request.getRequestId());
                                sendResponse(response);
                            } else {
                                LOGGER.warn("[{}]Fail to process server request, ackId->{}", grpcConn.getConnectionId(), request.getRequestId());
                            }
                        } catch (Exception e) {
                            LoggerUtils.printIfErrorEnabled(LOGGER, "[{}]Handle server request exception: {}", grpcConn.getConnectionId(), payload.toString(), e.getMessage());
                            Response errResponse = ErrorResponse.build(NacosException.CLIENT_ERROR, "Handle server request error");
                            errResponse.setRequestId(request.getRequestId());
                            sendResponse(errResponse);
                        }
                    }
                } catch (Exception e) {
                    LoggerUtils.printIfErrorEnabled(LOGGER, "[{}]Error to process server push response: {}", grpcConn.getConnectionId(), payload.getBody().getValue().toStringUtf8());
                }
            }
            
            @Override
            public void onError(Throwable throwable) {
                boolean isRunning = isRunning();
                boolean isAbandon = grpcConn.isAbandon();
                if (isRunning && !isAbandon) {
                    LoggerUtils.printIfErrorEnabled(LOGGER, "[{}]Request stream error, switch server,error={}", grpcConn.getConnectionId(), throwable);
                    if (rpcClientStatus.compareAndSet(RpcClientStatus.RUNNING, RpcClientStatus.UNHEALTHY)) {
                        switchServerAsync();
                    }
                } else {
                    LoggerUtils.printIfWarnEnabled(LOGGER, "[{}]Ignore error event,isRunning:{},isAbandon={}", grpcConn.getConnectionId(), isRunning, isAbandon);
                }
            }
            
            @Override
            public void onCompleted() {
                boolean isRunning = isRunning();
                boolean isAbandon = grpcConn.isAbandon();
                if (isRunning && !isAbandon) {
                    LoggerUtils.printIfErrorEnabled(LOGGER, "[{}]Request stream onCompleted, switch server", grpcConn.getConnectionId());
                    if (rpcClientStatus.compareAndSet(RpcClientStatus.RUNNING, RpcClientStatus.UNHEALTHY)) {
                        switchServerAsync();
                    }
                } else {
                    LoggerUtils.printIfInfoEnabled(LOGGER, "[{}]Ignore complete event,isRunning:{},isAbandon={}", grpcConn.getConnectionId(), isRunning, isAbandon);
                }
            }
        });
    }
    ...
}

(4)总结

 

11.gRPC客户端的心跳机制(健康检查)

(1)线程任务一:处理连接成功或连接断开时的通知

(2)线程任务二:处理重连或健康检查

 

RpcClient的start()方法会调用GrpcClient的connectToServer()方法连接服务端,不管连接是否成功,最后都会往不同的阻塞队列中添加事件。

 

如果连接成功,那么就往RpcClient的eventLinkedBlockingQueue添加连接事件。如果连接失败,那么就往RpcClient的reconnectionSignal队列添加重连对象。而这两个阻塞队列中的数据处理,便是由执行RpcClient的start()方法时启动的两个线程任务进行处理的。

 

(1)线程任务一:处理连接成功或连接断开时的通知

这个任务主要在连接成功或者连接断开时,修改一些属性状态。通过eventLinkedBlockingQueue的take()方法从队列取到连接事件后,会判断连接事件是否建立连接还是断开连接。

 

如果是建立连接,那么就调用RpcClient的notifyConnected()方法,把执行NamingGrpcClientProxy的start()方法时所注册的NamingGrpcRedoService对象的connected属性设置为true。

 

如果是断开连接,那么就调用RpcClient的notifyDisConnected()方法,把执行NamingGrpcClientProxy的start()方法时所注册的NamingGrpcRedoService对象的connected属性设置为false。

public abstract class RpcClient implements Closeable {
    protected volatile AtomicReference<RpcClientStatus> rpcClientStatus = new AtomicReference<>(RpcClientStatus.WAIT_INIT);
    protected ScheduledExecutorService clientEventExecutor;
    protected BlockingQueue<ConnectionEvent> eventLinkedBlockingQueue = new LinkedBlockingQueue<>();
    private final BlockingQueue<ReconnectContext> reconnectionSignal = new ArrayBlockingQueue<>(1);
    //listener called where connection's status changed. 连接状态改变的监听器
    protected List<ConnectionEventListener> connectionEventListeners = new ArrayList<>();
    ...
    
    public final void start() throws NacosException {
        //利用CAS来修改RPC客户端(RpcClient)的状态,从INITIALIZED更新为STARTING
        boolean success = rpcClientStatus.compareAndSet(RpcClientStatus.INITIALIZED, RpcClientStatus.STARTING);
        if (!success) {
            return;
        }

        //接下来创建调度线程池执行器,并提交两个任务
        clientEventExecutor = new ScheduledThreadPoolExecutor(2, r -> {
            Thread t = new Thread(r);
            t.setName("com.alibaba.nacos.client.remote.worker");
            t.setDaemon(true);
            return t;
        });
    
        //任务1:处理连接成功或连接断开时的线程
        clientEventExecutor.submit(() -> {
            while (!clientEventExecutor.isTerminated() && !clientEventExecutor.isShutdown()) {
                ConnectionEvent take;
                try {
                    take = eventLinkedBlockingQueue.take();
                    if (take.isConnected()) {
                        notifyConnected();
                    } else if (take.isDisConnected()) {
                        notifyDisConnected();
                    }
                } catch (Throwable e) {
                    // Do nothing
                }
            }   
        });

        //任务2:向服务端上报心跳或重连的线程
        clientEventExecutor.submit(() -> {
            ...
        });
    }
    ...
                                   
    //Notify when client new connected.
    protected void notifyConnected() {
        if (connectionEventListeners.isEmpty()) {
            return;
        }
        LoggerUtils.printIfInfoEnabled(LOGGER, "[{}] Notify connected event to listeners.", name);
        for (ConnectionEventListener connectionEventListener : connectionEventListeners) {
            try {
                connectionEventListener.onConnected();
            } catch (Throwable throwable) {
                LoggerUtils.printIfErrorEnabled(LOGGER, "[{}] Notify connect listener error, listener = {}", name, connectionEventListener.getClass().getName());
            }
        }
    }
    
    //Notify when client disconnected.
    protected void notifyDisConnected() {
        if (connectionEventListeners.isEmpty()) {
            return;
        }
        LoggerUtils.printIfInfoEnabled(LOGGER, "[{}] Notify disconnected event to listeners", name);
        for (ConnectionEventListener connectionEventListener : connectionEventListeners) {
            try {
                connectionEventListener.onDisConnect();
            } catch (Throwable throwable) {
                LoggerUtils.printIfErrorEnabled(LOGGER, "[{}] Notify disconnect listener error, listener = {}", name, connectionEventListener.getClass().getName());
            }
        }
    }
    ...
    
    //Register connection handler. Will be notified when inner connection's state changed.
    //在执行NamingGrpcClientProxy.start()方法时会将NamingGrpcRedoService对象注册到connectionEventListeners中
    public synchronized void registerConnectionListener(ConnectionEventListener connectionEventListener) {
        LoggerUtils.printIfInfoEnabled(LOGGER, "[{}] Registry connection listener to current client:{}", name, connectionEventListener.getClass().getName());
        this.connectionEventListeners.add(connectionEventListener);
    }
    ...
}

public class NamingGrpcRedoService implements ConnectionEventListener {
    private volatile boolean connected = false;
    ...
    
    @Override
    public void onConnected() {
        connected = true;
        LogUtils.NAMING_LOGGER.info("Grpc connection connect");
    }
    
    @Override
    public void onDisConnect() {
        connected = false;
        LogUtils.NAMING_LOGGER.warn("Grpc connection disconnect, mark to redo");
        synchronized (registeredInstances) {
            registeredInstances.values().forEach(instanceRedoData -> instanceRedoData.setRegistered(false));
        }
        synchronized (subscribes) {
            subscribes.values().forEach(subscriberRedoData -> subscriberRedoData.setRegistered(false));
        }
        LogUtils.NAMING_LOGGER.warn("mark to redo completed");
    }
    ...
}

(2)线程任务二:处理重连或健康检查

如果RpcClient的start()方法在调用GrpcClient的connectToServer()方法连接服务端时失败了,那么会往RpcClient.reconnectionSignal队列添加重连对象的,而这个任务就会获取reconnectionSignal队列中的重连对象进行重连。

 

因为reconnectionSignal中的数据是当连接失败时放入的,所以如果从reconnectionSignal中获取不到重连对象,等同于连接成功。

 

注意:这个任务从reconnectionSignal阻塞队列中获取重连对象时,调用的是阻塞队列的take()方法,而不是阻塞队列的poll()方法。BlockingQueue的take()方法,如果读取不到数据,会一直处于阻塞状态。BlockingQueue的poll()方法,在指定的时间内读取不到数据,会返回null。

 

情况一:如果从reconnectionSignal队列中获取到的重连对象为null

首先判断存活时间是否大于 5s,如果大于则调用RpcClient.healthCheck()方法发起健康检查的RPC请求。健康检查的触发方法是currentConnection.request()方法,健康检查的请求类型是HealthCheckRequest。

 

如果健康检查成功,只需刷新存活时间即可。如果健康检查失败,则需要尝试与服务端重新建立连接。

 

情况二:如果从reconnectionSignal队列中获取到的重连对象不为null

那么就调用RpcClient的reconnect()方法进行重新连接,该方法会通过GrpcClient的connectToServer()方法尝试与服务端建立连接。

public abstract class RpcClient implements Closeable {
    protected volatile AtomicReference<RpcClientStatus> rpcClientStatus = new AtomicReference<>(RpcClientStatus.WAIT_INIT);
    protected ScheduledExecutorService clientEventExecutor;
    protected BlockingQueue<ConnectionEvent> eventLinkedBlockingQueue = new LinkedBlockingQueue<>();
    private final BlockingQueue<ReconnectContext> reconnectionSignal = new ArrayBlockingQueue<>(1);
    ...
    
    public final void start() throws NacosException {
        //利用CAS来修改RPC客户端(RpcClient)的状态,从INITIALIZED更新为STARTING
        boolean success = rpcClientStatus.compareAndSet(RpcClientStatus.INITIALIZED, RpcClientStatus.STARTING);
        if (!success) {
            return;
        }

        //接下来创建调度线程池执行器,并提交两个任务
        clientEventExecutor = new ScheduledThreadPoolExecutor(2, r -> {
            Thread t = new Thread(r);
            t.setName("com.alibaba.nacos.client.remote.worker");
            t.setDaemon(true);
            return t;
        });
    
        //任务1:处理连接成功或连接断开时的线程
        clientEventExecutor.submit(() -> {
            ...     
        });

        //任务2:向服务端上报心跳或重连的线程
        clientEventExecutor.submit(() -> {
            while (true) {
                try {
                    if (isShutdown()) {
                        break;
                    }
                    //这里从reconnectionSignal阻塞队列中获取任务不是调用take()方法,而是调用poll()方法,并且指定了5s的最大读取时间
                    //BlockingQueue的take()方法,如果读取不到数据,会一直处于阻塞状态
                    //BlockingQueue的poll()方法,在指定的时间内读取不到数据,会返回null
                    ReconnectContext reconnectContext = reconnectionSignal.poll(keepAliveTime, TimeUnit.MILLISECONDS);

                    //reconnectContext为null,说明从reconnectionSignal中获取不到数据
                    //由于reconnectionSignal中的数据是当连接失败时放入的
                    //所以从reconnectionSignal中获取不到数据,等同于连接成功
                    if (reconnectContext == null) {
                        //check alive time.
                        //检查存活时间,默认存活时间为5s,超过5s就需要做健康检查
                        if (System.currentTimeMillis() - lastActiveTimeStamp >= keepAliveTime) {
                            //调用RpcClient.healthCheck()方法,发起健康检查请求
                            boolean isHealthy = healthCheck();
                            //如果向服务端发起健康检查请求失败,则需要尝试重新建立连接
                            if (!isHealthy) {
                                if (currentConnection == null) {
                                    continue;
                                }
                                LoggerUtils.printIfInfoEnabled(LOGGER, "[{}] Server healthy check fail, currentConnection = {}", name, currentConnection.getConnectionId());
                                //判断连接状态是否关闭,如果是则结束异步任务
                                RpcClientStatus rpcClientStatus = RpcClient.this.rpcClientStatus.get();
                                if (RpcClientStatus.SHUTDOWN.equals(rpcClientStatus)) {
                                    break;
                                }
                                //修改RpcClient的连接状态为不健康
                                boolean statusFLowSuccess = RpcClient.this.rpcClientStatus.compareAndSet(rpcClientStatus, RpcClientStatus.UNHEALTHY);
                                //给reconnectContext属性赋值,准备尝试重连
                                if (statusFLowSuccess) {
                                    //重新赋值,注意这里没有continue,所以逻辑会接着往下执行
                                    reconnectContext = new ReconnectContext(null, false);
                                } else {
                                    continue;
                                }
                            } else {
                                //如果向服务端发起健康检查请求成功,则刷新RpcClient的存活时间
                                lastActiveTimeStamp = System.currentTimeMillis();
                                continue;
                            }
                        } else {
                            continue;
                        }
                    }
                    
                    if (reconnectContext.serverInfo != null) {
                        //clear recommend server if server is not in server list.
                        //如果服务器不在服务器列表中,则清除推荐服务器,即设置reconnectContext.serverInfo为null

                        boolean serverExist = false;
                        //遍历服务端列表
                        for (String server : getServerListFactory().getServerList()) {
                            ServerInfo serverInfo = resolveServerInfo(server);
                            if (serverInfo.getServerIp().equals(reconnectContext.serverInfo.getServerIp())) {
                                serverExist = true;
                                reconnectContext.serverInfo.serverPort = serverInfo.serverPort;
                                break;
                            }
                        }
                        //reconnectContext.serverInfo不存在服务端列表中,就清除服务器信息,设置reconnectContext.serverInfo为null
                        if (!serverExist) {
                            LoggerUtils.printIfInfoEnabled(LOGGER, "[{}] Recommend server is not in server list, ignore recommend server {}", name, reconnectContext.serverInfo.getAddress());
                            reconnectContext.serverInfo = null;
                        }
                    }
                    //进行重新连接,RpcClient.reconnect()方法中会调用GrpcClient.connectToServer()方法尝试与服务端建立连接
                    reconnect(reconnectContext.serverInfo, reconnectContext.onRequestFail);
                } catch (Throwable throwable) {
                    //Do nothing
                }
            }
        });
    }
    
    private boolean healthCheck() {
        HealthCheckRequest healthCheckRequest = new HealthCheckRequest();
        if (this.currentConnection == null) {
            return false;
        }
        try {
            //利用currentConnection连接对象,发起RPC请求,请求类型是HealthCheckRequest
            Response response = this.currentConnection.request(healthCheckRequest, 3000L);
            //not only check server is ok, also check connection is register.
            return response != null && response.isSuccess();
        } catch (NacosException e) {
            //ignore
        }
        return false;
    }
    ...
}

(3)总结

 

12.gRPC服务端如何处理客户端的建立连接请求

(1)gRPC服务端是如何启动的

(2)connectionId如何绑定Client对象的

 

(1)gRPC服务端是如何启动的

BaseRpcServer类有一个被@PostConstruct修饰的start()方法,该方法会调用BaseGrpcServer的startServer()方法来启动gRPC服务端。

 

在BaseGrpcServer的startServer()方法中,首先会调用BaseGrpcServer的addServices()方法添加服务,然后会使用建造者模式通过ServerBuilder创建gRPC框架的Server对象,最后启动gRPC框架的Server服务端,即启动一个NettyServer服务端。

//abstract rpc server.
public abstract class BaseRpcServer {
    ...
    //Start sever. 启动gRPC服务端
    @PostConstruct
    public void start() throws Exception {
        String serverName = getClass().getSimpleName();
        Loggers.REMOTE.info("Nacos {} Rpc server starting at port {}", serverName, getServicePort());

        //调用BaseGrpcServer.startServer()方法启动gRPC服务端
        startServer();

        Loggers.REMOTE.info("Nacos {} Rpc server started at port {}", serverName, getServicePort());
        Runtime.getRuntime().addShutdownHook(new Thread(() -> {
            Loggers.REMOTE.info("Nacos {} Rpc server stopping", serverName);
            try {
                BaseRpcServer.this.stopServer();
                Loggers.REMOTE.info("Nacos {} Rpc server stopped successfully...", serverName);
            } catch (Exception e) {
                Loggers.REMOTE.error("Nacos {} Rpc server stopped fail...", serverName, e);
            }
        }));
    }
    
    //get service port.
    public int getServicePort() {
        return EnvUtil.getPort() + rpcPortOffset();
    }
    ...
}

//Grpc implementation as a rpc server.
public abstract class BaseGrpcServer extends BaseRpcServer {
    ...
    @Override
    public void startServer() throws Exception {
        final MutableHandlerRegistry handlerRegistry = new MutableHandlerRegistry();
    
        //server interceptor to set connection id. 定义请求拦截器
        ServerInterceptor serverInterceptor = new ServerInterceptor() {
            @Override
            public <T, S> ServerCall.Listener<T> interceptCall(ServerCall<T, S> call, Metadata headers, ServerCallHandler<T, S> next) {
                Context ctx = Context.current()
                    .withValue(CONTEXT_KEY_CONN_ID, call.getAttributes().get(TRANS_KEY_CONN_ID))
                    .withValue(CONTEXT_KEY_CONN_REMOTE_IP, call.getAttributes().get(TRANS_KEY_REMOTE_IP))
                    .withValue(CONTEXT_KEY_CONN_REMOTE_PORT, call.getAttributes().get(TRANS_KEY_REMOTE_PORT))
                    .withValue(CONTEXT_KEY_CONN_LOCAL_PORT, call.getAttributes().get(TRANS_KEY_LOCAL_PORT));
                if (REQUEST_BI_STREAM_SERVICE_NAME.equals(call.getMethodDescriptor().getServiceName())) {
                    Channel internalChannel = getInternalChannel(call);
                    ctx = ctx.withValue(CONTEXT_KEY_CHANNEL, internalChannel);
                }
                return Contexts.interceptCall(ctx, call, headers, next);
            }
        };

        //1.调用BaseGrpcServer.addServices()方法添加服务
        addServices(handlerRegistry, serverInterceptor);

        //2.创建一个gRPC框架的Server对象,使用了建造者模式
        server = ServerBuilder.forPort(getServicePort()).executor(getRpcExecutor())
        .maxInboundMessageSize(getInboundMessageSize()).fallbackHandlerRegistry(handlerRegistry)
        .compressorRegistry(CompressorRegistry.getDefaultInstance())
        .decompressorRegistry(DecompressorRegistry.getDefaultInstance())
        .addTransportFilter(new ServerTransportFilter() {
            @Override
            public Attributes transportReady(Attributes transportAttrs) {
                InetSocketAddress remoteAddress = (InetSocketAddress) transportAttrs.get(Grpc.TRANSPORT_ATTR_REMOTE_ADDR);
                InetSocketAddress localAddress = (InetSocketAddress) transportAttrs.get(Grpc.TRANSPORT_ATTR_LOCAL_ADDR);
                int remotePort = remoteAddress.getPort();
                int localPort = localAddress.getPort();
                String remoteIp = remoteAddress.getAddress().getHostAddress();
                Attributes attrWrapper = transportAttrs.toBuilder()
                    .set(TRANS_KEY_CONN_ID, System.currentTimeMillis() + "_" + remoteIp + "_" + remotePort)
                    .set(TRANS_KEY_REMOTE_IP, remoteIp).set(TRANS_KEY_REMOTE_PORT, remotePort)
                    .set(TRANS_KEY_LOCAL_PORT, localPort).build();
                String connectionId = attrWrapper.get(TRANS_KEY_CONN_ID);
                Loggers.REMOTE_DIGEST.info("Connection transportReady,connectionId = {} ", connectionId);
                return attrWrapper;
            }
            
            @Override
            public void transportTerminated(Attributes transportAttrs) {
                String connectionId = null;
                try {
                    connectionId = transportAttrs.get(TRANS_KEY_CONN_ID);
                } catch (Exception e) {
                        //Ignore
                }
                if (StringUtils.isNotBlank(connectionId)) {
                    Loggers.REMOTE_DIGEST.info("Connection transportTerminated,connectionId = {} ", connectionId);
                    connectionManager.unregister(connectionId);
                }
            }
        }).build();
        
        //3.启动gRPC框架的Server
        server.start();
    }
    ...
}

(2)connectionId如何绑定Client对象的

BaseGrpcServer的startServer()方法在执行addServices()方法添加服务时,就会对connectionId与Client对象进行绑定。

 

绑定会由GrpcBiStreamRequestAcceptor的requestBiStream()方法触发。具体就是会调用ConnectionManager.register()方法来实现绑定,即先通过执行"connections.put(connectionId, connection)"代码,将connectionId和connection连接对象,放入到ConnectionManager的connections这个Map属性中。再执行ClientConnectionEventListenerRegistry的notifyClientConnected()方法,把Connection连接对象包装成Client对象。

 

将Connection连接对象包装成Client对象时,又会继续调用ConnectionBasedClientManager的clientConnected()方法,该方法便会根据connectionId创建出一个Client对象,然后将其放入到ConnectionBasedClientManager的clients这个Map中,从而实现connectionId与Client对象的关联。

//Grpc implementation as a rpc server.
public abstract class BaseGrpcServer extends BaseRpcServer {
    ...
    private void addServices(MutableHandlerRegistry handlerRegistry, ServerInterceptor... serverInterceptor) {
        //unary common call register.
        final MethodDescriptor<Payload, Payload> unaryPayloadMethod = MethodDescriptor.<Payload, Payload>newBuilder()
            .setType(MethodDescriptor.MethodType.UNARY)
            .setFullMethodName(MethodDescriptor.generateFullMethodName(REQUEST_SERVICE_NAME, REQUEST_METHOD_NAME))
            .setRequestMarshaller(ProtoUtils.marshaller(Payload.getDefaultInstance()))
            .setResponseMarshaller(ProtoUtils.marshaller(Payload.getDefaultInstance())).build();

        //对gRPC客户端请求的服务进行映射处理
        final ServerCallHandler<Payload, Payload> payloadHandler = ServerCalls.asyncUnaryCall((request, responseObserver) -> grpcCommonRequestAcceptor.request(request, responseObserver));
      
        //构建ServerServiceDefinition服务
        final ServerServiceDefinition serviceDefOfUnaryPayload = ServerServiceDefinition.builder(REQUEST_SERVICE_NAME).addMethod(unaryPayloadMethod, payloadHandler).build();

        //添加服务到gRPC的请求流程中
        handlerRegistry.addService(ServerInterceptors.intercept(serviceDefOfUnaryPayload, serverInterceptor));
    
        //bi stream register.
        //处理客户端连接对象的关联
        //也就是调用GrpcBiStreamRequestAcceptor.requestBiStream()方法对ConnectionId与Client对象进行绑定
        final ServerCallHandler<Payload, Payload> biStreamHandler = ServerCalls.asyncBidiStreamingCall((responseObserver) -> grpcBiStreamRequestAcceptor.requestBiStream(responseObserver));
    
        final MethodDescriptor<Payload, Payload> biStreamMethod = MethodDescriptor.<Payload, Payload>newBuilder()
            .setType(MethodDescriptor.MethodType.BIDI_STREAMING)
            .setFullMethodName(MethodDescriptor.generateFullMethodName(REQUEST_BI_STREAM_SERVICE_NAME, REQUEST_BI_STREAM_METHOD_NAME))
            .setRequestMarshaller(ProtoUtils.marshaller(Payload.newBuilder().build()))
            .setResponseMarshaller(ProtoUtils.marshaller(Payload.getDefaultInstance())).build();
    
        final ServerServiceDefinition serviceDefOfBiStream = ServerServiceDefinition.builder(REQUEST_BI_STREAM_SERVICE_NAME).addMethod(biStreamMethod, biStreamHandler).build();
        handlerRegistry.addService(ServerInterceptors.intercept(serviceDefOfBiStream, serverInterceptor));
    }
    ...
}

@Service
public class GrpcBiStreamRequestAcceptor extends BiRequestStreamGrpc.BiRequestStreamImplBase {
    ...
    @Override
    public StreamObserver<Payload> requestBiStream(StreamObserver<Payload> responseObserver) {
        StreamObserver<Payload> streamObserver = new StreamObserver<Payload>() {
            ...
            @Override
            public void onNext(Payload payload) {
                ...
                //创建连接信息对象,把一些元信息放入到这个对象中
                ConnectionMeta metaInfo = new ConnectionMeta(connectionId, payload.getMetadata().getClientIp(),
                    remoteIp, remotePort, localPort, ConnectionType.GRPC.getType(),
                    setUpRequest.getClientVersion(), appName, setUpRequest.getLabels());
                metaInfo.setTenant(setUpRequest.getTenant());
                //把连接信息包装到连接对象中
                Connection connection = new GrpcConnection(metaInfo, responseObserver, CONTEXT_KEY_CHANNEL.get());
                connection.setAbilities(setUpRequest.getAbilities());
                boolean rejectSdkOnStarting = metaInfo.isSdkSource() && !ApplicationUtils.isStarted();

                //ConnectionManager.register()方法,会将connectionId和连接对象进行绑定
                if (rejectSdkOnStarting || !connectionManager.register(connectionId, connection)) {
                    ...
                }
                ...
            }
            ...
        };
        return streamObserver;
    }
    ...
}

@Service
public class ConnectionManager extends Subscriber<ConnectionLimitRuleChangeEvent> {
    //存储connectionId对应的Connection对象
    Map<String, Connection> connections = new ConcurrentHashMap<>();
    ...
    //register a new connect.
    public synchronized boolean register(String connectionId, Connection connection) {
        if (connection.isConnected()) {
            if (connections.containsKey(connectionId)) {
                return true;
            }
            if (!checkLimit(connection)) {
                return false;
            }
            if (traced(connection.getMetaInfo().clientIp)) {
                connection.setTraced(true);
            }
            //将connectionId与Connection连接对象进行绑定
            connections.put(connectionId, connection);
            connectionForClientIp.get(connection.getMetaInfo().clientIp).getAndIncrement();
            //把Connection连接对象包装成Client对象
            clientConnectionEventListenerRegistry.notifyClientConnected(connection);
            Loggers.REMOTE_DIGEST.info("new connection registered successfully, connectionId = {},connection={} ", connectionId, connection);
            return true;
        }
        return false;
    }
    ...
}

@Service
public class ClientConnectionEventListenerRegistry {
    final List<ClientConnectionEventListener> clientConnectionEventListeners = new ArrayList<ClientConnectionEventListener>();
    //notify where a new client connected
    public void notifyClientConnected(final Connection connection) {
        for (ClientConnectionEventListener clientConnectionEventListener : clientConnectionEventListeners) {
            try {
                //调用ConnectionBasedClientManager.clientConnected()方法
                clientConnectionEventListener.clientConnected(connection);
            } catch (Throwable throwable) {
                Loggers.REMOTE.info("[NotifyClientConnected] failed for listener {}", clientConnectionEventListener.getName(), throwable);
            }
        }
    }
    ...
}

@Component("connectionBasedClientManager")
public class ConnectionBasedClientManager extends ClientConnectionEventListener implements ClientManager {
    private final ConcurrentMap<String, ConnectionBasedClient> clients = new ConcurrentHashMap<>();
    
    @Override
    public void clientConnected(Connection connect) {
        if (!RemoteConstants.LABEL_MODULE_NAMING.equals(connect.getMetaInfo().getLabel(RemoteConstants.LABEL_MODULE))) {
            return;
        }
        //把Connection对象中的信息取出来,放到ClientAttributes对象中
        ClientAttributes attributes = new ClientAttributes();
        attributes.addClientAttribute(ClientConstants.CONNECTION_TYPE, connect.getMetaInfo().getConnectType());
        attributes.addClientAttribute(ClientConstants.CONNECTION_METADATA, connect.getMetaInfo());
        //传入connectionId和连接信息
        clientConnected(connect.getMetaInfo().getConnectionId(), attributes);
    }
    
    @Override
    public boolean clientConnected(String clientId, ClientAttributes attributes) {
        String type = attributes.getClientAttribute(ClientConstants.CONNECTION_TYPE);
        ClientFactory clientFactory = ClientFactoryHolder.getInstance().findClientFactory(type);
        //这里的clientId就是connectionId,根据connectionId创建出Client对象
        return clientConnected(clientFactory.newClient(clientId, attributes));
    }
    
    @Override
    public boolean clientConnected(final Client client) {
        //最后将connectionId与Client对象进行绑定,放入到ConnectionBasedClientManager的clients这个Map中
        clients.computeIfAbsent(client.getClientId(), s -> {
            Loggers.SRV_LOG.info("Client connection {} connect", client.getClientId());
            return (ConnectionBasedClient) client;
        });
        return true;
    }
    ...
}

(3)总结

 

13.gRPC服务端如何映射各种请求与对应的Handler处理类

gRPC服务端会如何处理客户端请求,如何找到对应的Handler处理类。

 

在gRPC服务端启动时,会调用BaseGrpcServer的startServer()方法,其中就会执行到BaseGrpcServer的addServices()方法。在BaseGrpcServer的addServices()方法中,就会进行请求与Handler映射,也就是调用GrpcRequestAcceptor的request()方法进行请求与Handler映射。

 

在GrpcRequestAcceptor的request()方法中,首先会从请求对象中获取请求type,然后会通过请求type获取一个Handler对象,最后调用RequestHandler的模版方法handleRequest(),从而调用具体Handler对象的handle()方法。

//Grpc implementation as a rpc server.
public abstract class BaseGrpcServer extends BaseRpcServer {
    @Autowired
    private GrpcRequestAcceptor grpcCommonRequestAcceptor;
    ...
    private void addServices(MutableHandlerRegistry handlerRegistry, ServerInterceptor... serverInterceptor) {
        //unary common call register.
        final MethodDescriptor<Payload, Payload> unaryPayloadMethod = MethodDescriptor.<Payload, Payload>newBuilder()
            .setType(MethodDescriptor.MethodType.UNARY)
            .setFullMethodName(MethodDescriptor.generateFullMethodName(REQUEST_SERVICE_NAME, REQUEST_METHOD_NAME))
            .setRequestMarshaller(ProtoUtils.marshaller(Payload.getDefaultInstance()))
            .setResponseMarshaller(ProtoUtils.marshaller(Payload.getDefaultInstance())).build();

        //对gRPC客户端发出的请求进行Handler处理类的映射处理
        final ServerCallHandler<Payload, Payload> payloadHandler = ServerCalls.asyncUnaryCall((request, responseObserver) -> grpcCommonRequestAcceptor.request(request, responseObserver));
      
        //构建ServerServiceDefinition服务
        final ServerServiceDefinition serviceDefOfUnaryPayload = ServerServiceDefinition.builder(REQUEST_SERVICE_NAME).addMethod(unaryPayloadMethod, payloadHandler).build();

        //添加服务到gRPC的请求流程中
        handlerRegistry.addService(ServerInterceptors.intercept(serviceDefOfUnaryPayload, serverInterceptor));
    
        //bi stream register.
        //处理客户端连接对象的关联
        //也就是调用GrpcBiStreamRequestAcceptor.requestBiStream()方法对ConnectionId与Client对象进行绑定
        final ServerCallHandler<Payload, Payload> biStreamHandler = ServerCalls.asyncBidiStreamingCall((responseObserver) -> grpcBiStreamRequestAcceptor.requestBiStream(responseObserver));
    
        final MethodDescriptor<Payload, Payload> biStreamMethod = MethodDescriptor.<Payload, Payload>newBuilder()
            .setType(MethodDescriptor.MethodType.BIDI_STREAMING)
            .setFullMethodName(MethodDescriptor.generateFullMethodName(REQUEST_BI_STREAM_SERVICE_NAME, REQUEST_BI_STREAM_METHOD_NAME))
            .setRequestMarshaller(ProtoUtils.marshaller(Payload.newBuilder().build()))
            .setResponseMarshaller(ProtoUtils.marshaller(Payload.getDefaultInstance())).build();
    
        final ServerServiceDefinition serviceDefOfBiStream = ServerServiceDefinition.builder(REQUEST_BI_STREAM_SERVICE_NAME).addMethod(biStreamMethod, biStreamHandler).build();
        handlerRegistry.addService(ServerInterceptors.intercept(serviceDefOfBiStream, serverInterceptor));
    }
    ...
}

@Service
public class GrpcRequestAcceptor extends RequestGrpc.RequestImplBase {
    ...
    @Override
    public void request(Payload grpcRequest, StreamObserver<Payload> responseObserver) {
        ...
        //首先从请求对象中获取请求type
        String type = grpcRequest.getMetadata().getType();
        ...
        //然后通过请求type获取一个Handler对象
        RequestHandler requestHandler = requestHandlerRegistry.getByRequestType(type);
        ...
        //最后调用RequestHandler的模版方法handleRequest(),从而调用具体Handler对象的handle()方法
        Response response = requestHandler.handleRequest(request, requestMeta);
        ...
    }
    ...
}

public abstract class RequestHandler<T extends Request, S extends Response> {
    @Autowired
    private RequestFilters requestFilters;
    
    //Handler request.
    public Response handleRequest(T request, RequestMeta meta) throws NacosException {
        for (AbstractRequestFilter filter : requestFilters.filters) {
            try {
                Response filterResult = filter.filter(request, meta, this.getClass());
                if (filterResult != null && !filterResult.isSuccess()) {
                    return filterResult;
                }
            } catch (Throwable throwable) {
                Loggers.REMOTE.error("filter error", throwable);
            }
        }
        //调用具体Handler的handle()方法
        return handle(request, meta);
    }
    //Handler request.
    public abstract S handle(T request, RequestMeta meta) throws NacosException;
}

@Service
public class RequestHandlerRegistry implements ApplicationListener<ContextRefreshedEvent> {
    Map<String, RequestHandler> registryHandlers = new HashMap<String, RequestHandler>();
    
    @Autowired
    private TpsMonitorManager tpsMonitorManager;
    
    //Get Request Handler By request Type.
    public RequestHandler getByRequestType(String requestType) {
        return registryHandlers.get(requestType);
    }
    
    @Override
    public void onApplicationEvent(ContextRefreshedEvent event) {
        //获取全部继承了RequestHandler类的实现类
        Map<String, RequestHandler> beansOfType = event.getApplicationContext().getBeansOfType(RequestHandler.class);
        Collection<RequestHandler> values = beansOfType.values();
        for (RequestHandler requestHandler : values) {
            Class<?> clazz = requestHandler.getClass();
            boolean skip = false;
            while (!clazz.getSuperclass().equals(RequestHandler.class)) {
                if (clazz.getSuperclass().equals(Object.class)) {
                    skip = true;
                    break;
                }
                clazz = clazz.getSuperclass();
            }
            if (skip) {
                continue;
            }
            try {
                Method method = clazz.getMethod("handle", Request.class, RequestMeta.class);
                if (method.isAnnotationPresent(TpsControl.class) && TpsControlConfig.isTpsControlEnabled()) {
                    TpsControl tpsControl = method.getAnnotation(TpsControl.class);
                    String pointName = tpsControl.pointName();
                    TpsMonitorPoint tpsMonitorPoint = new TpsMonitorPoint(pointName);
                    tpsMonitorManager.registerTpsControlPoint(tpsMonitorPoint);
                }
            } catch (Exception e) {
                //ignore.
            }
            Class tClass = (Class) ((ParameterizedType) clazz.getGenericSuperclass()).getActualTypeArguments()[0];
            registryHandlers.putIfAbsent(tClass.getSimpleName(), requestHandler);
        }
    }
}

 

14.gRPC简单介绍

(1)gRPC是什么

(2)gRPC的特性

(3)gRPC和Dubbo的区别

 

(1)gRPC是什么

gRPC是一个高性能、开源和通用的RPC框架。gRPC基于ProtoBuf序列化协议开发,且支持众多开发语言。gRPC是面向服务端和移动端,基于HTTP 2设计的,带来诸如双向流、流控、头部压缩、单TCP连接上的多复用请求等特。这些特性使得其在移动设备上表现更好,更省电和节省空间占用。

 

(2)gRPC的特性

一.gRPC可以跨语言使用

 

二.基于IDL(接口定义语言Interface Define Language)文件定义服务

通过proto3工具生成指定语言的数据结构、服务端接口以及客户端Stub。

 

三.通信协议基于标准的HTTP 2设计

支持双向流、消息头压缩、单TCP的多路复用、服务端推送等特性,这些特性使得gRPC在移动端设备上更加省电和节省网络流量。

 

四.序列化支持ProtoBuf和JSON

ProtoBuf是一种语言无关的高性能序列化框架,它是基于HTTP2和ProtoBuf的,这保障了gRPC调用的高性能。

 

五.安装简单,扩展方便

使用gRPC框架每秒可达到百万RPC。

 

(3)gRPC和Dubbo的区别

一.通讯协议

gRPC基于HTTP 2.0,Dubbo基于TCP。

 

二.序列化

gRPC使用ProtoBuf,Dubbo使用Hession2等基于Java的序列化技术。

 

三.服务注册与发现

gRPC是应用级别的服务注册,Dubbo2.0及之前的版本都是基于更细力度的服务来进行注册,Dubbo3.0之后转向应用级别的服务注册。

 

四.编程语言

gRPC可以使用任何语言(HTTP和ProtoBuf天然就是跨语言的),而Dubbo只能使用在构建在JVM之上的语言。

 

五.服务治理

gRPC自身的服务治理能力很弱,只能基于HTTP连接维度进行容错,而Dubbo可以基于服务维度进行治理。

 

总结:gRPC的优势在于跨语言、跨平台,但服务治理能力弱。Dubbo服务治理能力强,但受编程语言限制无法跨语言使用。

 

posted @ 2025-05-14 00:00  东阳马生架构  阅读(123)  评论(0)    收藏  举报
OSZAR »